Reactions with hydrazonoyl halides XXIX: synthesis of some new 1,2,4-triazolo[4,3-a]benzimidazole, thiazolo[3,2-a]benzimidazole, and unsymmetrical azine derivatives

Abdou O. Abdelhamid,* Nadia H. Metwally and Nasr S. Bishai
Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt

Triazolo[4,3-a]benzimidazole, thiazolo[3,2-a]benzimidazole, and unsymmetrical azines, were synthesized via reactions of C-thiazol-5-oyl- N -phenylhydrazonoyl bromide with each of 2-(methylthio)benzimidazole, benzimidazoline-2thione, and alkyl carbodithioate, respectively.
α-Ketohydrazonoyl halides have been widely employed for the synthesis of heterocyclic compounds. The reaction of equimolar amounts of C-thiazol-5-oyl- N-phenylhydrazonoyl bromide $\mathbf{1}^{6}$ with 2-(methylthio)benzimidazole (2) in ethanolic triethylamine solution furnished exclusively the corresponding 1-phenyl-3-(4'-methyl-2'-phenylthiazol-5'-oyl)-1,2,4-triazolo[4,3-a] benzimidazole (5). Structure 5 was proposed on the basis of analytical and spectral data. The formation of $\mathbf{5}$ can be explained by a stepwise path involving substitution to give amidrazone 3 , which readily cyclized to give intermediate 4 . The latter converted into $\mathbf{5}$ by elimination of $\mathrm{CH}_{3} \mathrm{SH}$ (c.f. Scheme 1).
On the other hand, benzimidazoline-2-thione (6) reacted with $\mathbf{1}$ in refluxing chloroform containing triethylamine to afford a product formulated as 2-phenylazo-3-(4'-methyl-2'-phenylthiazol-5'-yl)thiazolo[3,2-a]benzimidazole (10) based on the spectral data and elemental analyses. The IR spectrum of $\mathbf{1 0}$ revealed the absence of any bands between 1800 and $1600 \mathrm{~cm}^{-1}$ attributable to a CO group. ${ }^{7}$ Its ${ }^{1} \mathrm{H}$ NMR spectrum showed signals at $\delta=3.06$ (s, 3H, CH_{3} (thiazole $\left.\mathrm{C}-4\right)$) and 7.21-7.88 (m, 14H, ArH's). Its mass spectrum showed $m / z=451\left(\mathrm{M}^{+}\right)$. In contrast, 6 reacted with hydrazonoyl bromide $\mathbf{1}$ in sodium ethoxide solution to afford 1-benzimidazol-2'-ylthio)-1-phenylhydrazono-2-(4'-methyl-2'-phenylthiazol-5^{\prime}-oyl)ethane ($\mathbf{9}$). Compound 9 was converted into 10 by treatment with sulfuric acid.

Scheme 1

Treatment of hydrazonoyl bromide $\mathbf{1}$ with the methyl carbodithioates 11a, 11aa or 11ab in ethanolic triethylamine gave unsymmetrical azine 16a. Structure 16 was proposed on

[^0]the basis of elemental analyses, and spectral data. The formation of 16a can be explained via elimination of alkyl mercaptan from cycloadduct 15, which is assumed to be formed from the 1,3-dipolar cycloaddition of 7 to $\mathrm{C}=\mathrm{S}$ double bond with the appropriate 11a, 11aa, 11ab (c.f. Scheme 2). Alternatively, the formation of 16a can be also explained by stepwise path involving substitution or 1,3-addition to give acyclic hydrazone 14. Cyclization of the latter is achieved by elimination of alkyl mercaptan. Similarly, compounds 11b-f, 12a-d and 13a-c reacted with hydrazonoyl bromide $\mathbf{1}$ in ethanolic triethylamine, to give the corresponding unsymmetrical azines 16b-f, 17a-d and 19a-c, respectively.

Scheme 2

Treatment of methyl phenylthiocarbamate 19a with hydrazonoyl bromide $\mathbf{1}$ in ethanolic triethylamine gave 2-phenylim-ino-2,3-dihydro-1,3,4-thiadiazole 22a in good yield. In contrast, hydrazonoyl bromide 1 reacted with phenylthiourea (24a) in ethanolic triethylamine solution to give 5-phenylazothiazole derivative 23a. The structure of $\mathbf{2 3}$ was elucidated on the basis of elemental analyses, spectral data, and alternative route by treatment of benzenediazonium chloride with thiazole 25a (which was prepared by reaction of 5-bromoacetylthiazole ${ }^{8}$ with phenylthiourea). Compound $\mathbf{1}$ reacted with methyl phenyhydrazinecarbodithioate 19b in ethanolic triethylamine to give 2,3-dihydro-1,3,4-thiadiazole 22b. On the other hand, compound 1 reacts with benzoyl thiosemicarbazide to give 5-phenylazothiazole 23b (c.f. Scheme 3).
Hydrazonoyl bromide 1 reacted with 5-phenyl-1,3,4-oxadiazole-2-thione in boiling chloroform containing triethylamine to afford 2-benzoylhydrazino-1,3,4-thiadiazole 28. Structure 28 was elucidated on the basis of elemental analyses, spectral data, and alternative method [by treatment of 1 with the appropriate alkyl benzoylhydrazinecarbodithioate 29a,b in ethanolic triethylamine) (cf. Scheme 4).

Scheme 3

In the light of the above results, the mechanism outlined in Scheme 4 seems to be the most plausible pathway for the formation of $\mathbf{2 8}$ from the reaction $\mathbf{1}$ with 5-phenyl-1,3,4-oxadi-azole-2-thione. The reaction involves the initial formation of the thiohydrazonate ester 26, which undergoes intramolecular cyclization as soon as it is formed to yield the spirothiadiazole intermediate 27, or via 1,3-dipolar cycloaddition of nitrilum ylide 7 to the $\mathrm{C}=\mathrm{S}$ double bond of the oxadiazolethione. The formation of 26 and 27 are similar to the reaction of hydrazonoyl chloride with 5-phenyl-1,3,4-thiadiazole-2(3H)-thione ${ }^{9}$ and 1-phenyl-1,4-dihydrotetrazole-5-thione ${ }^{10}$. Ring-chain tautomerism of the spiro intermediate 27 leads to the end product 28. Alternatively, the formation of 29 can be explained via elimination of alkyl mercaptain from cycloadduct $\mathbf{3 0}$.

Techniques used: IR, 1H NMR and Mass spectra

Scheme 4

Tables: 2
Schemes: 4
References: 14
Received 21 February 2000; accepted 14 July 2000
Paper 00/201

References cited in this synopsis

1 Part 28: A.O. Abdelhamid, N.A. Abdel-Reheem and N.M. Hassan, Heteroatom Chem., 2000, 11, 213. This work was presented in part of the conference New Trends in Chemistry and its Application, 27-29 November 1999 Beni-Suef. Egypt.
6 A.O. Abdelhamid, N.M. Abed and F.M. Al-Fayez, Phosphorus, Sulfur and Silicon, 2000, 156, 35.
7 L.J. Bellamy, "The Infrared Spectra of Complex Molecules" 3rd• Ed. John Wiley, N.Y., London, 1975, p. 150.
8 O. Prakash, D.S. Tyagi and S.K. Sangal, J. Indian Chem. Soc., 1980, 47, 1136.
9 R. Huisgen, R. Grashey, M. Seidel, H. Knupfer and R. Schmidt, Liebigs Ann. Chem., 1962, 658, 169.
10 R.N. Butler, E.P. NiBhradaigh and K.J. Fitzgerald, J. Chem. Res., 1993(S) 306; (M) 1948.

[^0]: * To receive any correspondence. E-mail: Abdou@main-scc.eun.eg

